

Topics of Discussion

- Project Status
- · Conceptual Site Model
- Project Development, Objectives, and Design Overview
- Monitoring Activities
- Effectiveness Considerations

Slide 3

14 April 201

© 2010 ARCADIS

Plainwell Project Status

- Removal and Restoration Construction Activities
 - o Site prep began April 2007, first materials excavated June 2007
 - o Removal activities completed January 2009
 - o Replanting completed June 2009
 - o Notice of Completion received March 30, 2010
- Post-Removal Activities
 - o Monitoring and bank maintenance (if needed) for three years
 - o Residual risk evaluation to be done as part of Area 1 risk assessment

Project Summary

- Stabilized eroding banks and restored river bank habitat along 1.5 miles of the Kalamazoo River – 900+ trees and native shrubs planted
- 130,000 cy of sediments and soils removed across 27 acres
- · 5,000 pounds of PCBs removed
- Materials disposed at commercial landfills (16% TSCA, 84% non-TSCA)
- Remains of Plainwell Dam powerhouse removed
- Flow restored in historical western channel
 5 miles of free-flowing conditions
- Monitoring of restored areas to continue for 2 more years

CSM Overview

CSM Key Points

Primary Risk Driver

PCBs in fish is the key risk driver

PCB Sources

- Bank erosion is single largest continuing external source
- Extensive source control actions conducted and planned in upstream areas
- Continuing watershed sources remain – Morrow Lake, urban areas, industrial sites, regional atmospheric deposition, other
- Upstream sources factor into need for fish consumption advisories and take on greater importance as more significant sources are addressed

Upstream of Plainwell

- River upstream of Plainwell energetic with predominately low levels of PCBs
- · Limited PCB mass inventory

Plainwell Impoundment

- Former "Lake Plainwell" captured significant inventory of PCB-containing sediment – first major depositional area downstream of Kalamazoo
- Dam drawdown in 1970/1980s caused channel incisement and eroding banks
- Bank soils falling along toe of bank sustained higher sediment PCB concentrations along those shorelines
- Main channel sediment PCBs are low in comparison, with localized higher levels in deposits near the dam

Project Development, Objectives, and Design Overview

Slide 9

14 April 201

© 2010 ARCADIS

Project Planning Process

- Two-year planning process with key stakeholders USEPA, MDEQ, Natural Resource Trustees, KRSG
- Integrated Cleanup and River Restoration:
 - Former Plainwell Impoundment recognized as a key Area 1 concern (Morrow Dam to Plainwell Dam)
 - Stemming resupply of PCBs from eroding banks identified as a key issue
 - No CERCLA authority to require dam removal; however, dam removal to control water levels and restore free flowing river was key basis for agreement
 - USEPA February 14, 2007 Action Memo provided for consideration of dam removal in design phase
 - Targeted removal of sediments (near-shore and PCB hot spots) incorporated with bank stabilization to prevent downstream migration with dam removal
 - February 2007 AOC for TCRA Project Construction
 - Second AOC for River SRI/FS included addressing residual risk in Area 1 and long-term monitoring

Removal Action Objectives

From February 2007 Design Report:

- Cut back and stabilize river banks (source control)
- Dredge/excavate targeted PCB-containing sediments: behind Plainwell Dam, three mid-channel deposits, nearshore areas (source control)
- Dewater/process and dispose excavated materials (source control)
- Excavate targeted PCB-containing floodplain soils (risk management)
- · Control resuspension of sediments during construction
- Evaluate effects of lowering water levels on movement of sediments during construction and erosion of restored banks/floodplains
- Establish stable channel, re-vegetate work zones, and conduct post-construction monitoring

Key Design Elements

- Construct and operate water control structure to manage river levels during construction and allow controlled drawdown of water
- Remove near-shore sediments and cut back banks designed to control sources of PCBs and achieve a stable, natural channel design
 - Near-shore sediments removed to cutline defining pre-impoundment channel bottom
 - Bank soils removed to 30 ft back from top of bank to create clean buffer and isolate PCBs from new bank face
 - Different bank stabilization approaches (soft vs. hard) used in different areas of the project site; slope no steeper than 3:1
- Remove three mid-channel sediment deposits with PCBs > 50 ppm
 - Remove to 1 ppm or cutline defining pre-impoundment channel bottom
- Remove floodplain soils with PCBs > 50 ppm to cleanup level of 5 ppm
- Remove floodplain soils in targeted north bank areas upstream of US
 131 Bridge with PCBs > 4 ppm (near residential areas)

Key Design Elements (cont'd)

- Remove the former powerhouse to restore free-flowing conditions in western channel
- · Design/select appropriate turbidity/resuspension controls
- · Process excavated materials, dispose at off-site landfills
- Restore/revegetate river banks and floodplain areas use clean soils from removal areas as cover where appropriate
- · Conduct monitoring activities before, during, and after construction

TCRA Removal Areas

Bank Restoration

 All disturbed banks reconstructed to stable condition – variety of approaches used depending on erosion potential, wildlife access, aesthetics

- 30-foot wide buffer zone established/replanted/restored in floodplain
- Use of hard armor minimized where possible
- Monitoring/maintenance plan based on adaptive management approach

Bank Restoration (cont'd)

ARCADIS

Slide 17 14 April 2010 © 2010 ARCADIS

Bank Stabilization Approaches

Excavation Confirmation

- Real Time Kinematic Global Positioning System (RTK GPS) used to confirm removal target elevations
 - Data displayed continuously and recorded at pre-set locations to document removal elevation
- In-water excavation determined complete based on survey confirmation that design cutline was achieved
- Completion of excavation in bank and floodplain removal areas was verified through confirmation sampling
- · Re-excavation conducted as needed

Monitoring Activities

Monitoring to Assess Effects/ Impacts of Construction

Area 1 SRI Work Plan & TCRA Design Report:

- Surface Water Monitoring upstream and downstream of Plainwell Impoundment
- Yearling Fish Monitoring in Otsego City Impoundment
- Post-Removal Sediment Sampling
- Bathymetric Monitoring
- Groundwater Sampling

TCRA Design Report:

- Water Column PCB and Turbidity Monitoring at work areas
- Bank and Habitat Monitoring/Maintenance

Slide 21 14 April 2010 © 2010 ARCADIS

Surface Water Monitoring

Upstream & Downstream of Plainwell

- Objective: Quantify increase in solids and PCB loads in the river downstream of Plainwell, if any, that may be attributable to construction activities
- Samples collected every other day during active construction
 - Upstream 10th Street Bridge in Plainwell
 - Downstream Farmer Street Bridge in Otsego
 - October 2007 December 2007: 37 sample pairs
 - March 2008 January 2009: 139 sample pairs
- 402 total samples collected 398 non-detect results
 - · Maximum value 0.19 ug/L from upstream
- Data show no discernable contribution to solids or PCB transport resulting from construction activities

Surface Water Monitoring Locations

Slide 23 14 April 2010

© 2010 ARCADIS

Surface Water Sampling PCB Data

Surface Water Sampling TSS Data

Turbidity Monitoring

- Real-time turbidity levels collected during all excavation activities at various times:
 - Prior to work start, at beginning of work, two hours after start, every hour during work, end of work day
- Three monitoring locations established for each work area – one upstream and two downstream
 - Action taken if turbidity value at furthest downstream location was two times higher than the upstream reading
- Potential mitigation measures:
 - Inspect control systems, inspect turbidity meter, slow/halt excavation, install additional controls

Turbidity Monitoring (cont'd)

Results:

- Visible plumes observed several times, but action level exceeded only in excavation of Mid-Channel Area B
 - Additional control equipment installed (deflector walls, more silt curtains) and work slowed – exceedances continued
 - · Eventually completely enclosed the work area in steel sheeting
- Action level exceeded several times during dewatering of Cofferdam Area 1, so water was eventually pumped to the treatment system

Turbidity Monitoring (cont'd)

Yearling Smallmouth Bass Monitoring in Otsego City Impoundment

- Objective: assess potential impacts associated with releases/erosion of sediments during construction
- Yearling smallmouth bass collected yearlings have lower variance in PCB concentrations; therefore, more sensitive to changes than adults
- · Fish collected in Otsego City Impoundment
- · Three events carried out:
 - November 2006 before work
 - November 2007 after year 1
 - · November 2008 after year 2

Slide 29 14 April 2010

© 2010 ARCADIS

Yearling Smallmouth Bass Monitoring Results

- No statistically significant difference in average lipid-adjusted PCB concentration in 2006, 2007, 2008
- Data indicate removal activities did not significantly impact bioavailability of PCBs in downstream sampling area

Year	Sample Number (Composite/ Individuals)	Average Total PCB	Percent Lipids	Average Lipid- Adjusted PCB	Average Length	Average Weight
2006	7/35	1.5 mg/kg	1.3	116 mg PCB/kg lipid	14.3 cm	33.1 g
2007	5/10	3.0 mg/kg	2.6	115 mg PCB/kg lipid	15.4 cm	44.6 g
2008	7/49	2.3 mg/kg	2.0	117 mg PCB/kg lipid	13.9 cm	32.2 g

Yearling Smallmouth Bass Monitoring Results (cont'd)

Post-Removal Sediment Sampling

- Objective: measure post-construction sediment PCB concentrations for use in risk assessments
- 80 surface sediment (0-2 inch depth) samples collected at 75 locations in 26 removal areas
 - · January 2008: Removal Areas completed in 2007
 - · March 2009: Removal Areas completed in 2008
- · 41% of samples: PCBs not-detected
- 81% of samples: PCB concentration < 1 mg/kg
- · Three highest values all from Removal Area 1

Statistic	Value		
Range	ND - 48 mg/kg (at PCS-1-1)		
Median	0.061 mg/kg		
Average	1.7 mg/kg		
Average excluding PCS-1-1	1.1 mg/kg		

Post-Removal Surface Sediment Sampling 2008 and 2009 Results

Samples from Mid-Channel Prism

Bathymetric Monitoring

- Objective: assess movement of sediment following removal action as river channel establishes a new equilibrium in the re-energized system
- Monitor 10 transects established by USGS between US 131 Bridge and Plainwell Dam
- · Monitor for two years or until 80% decrease in mid-channel prism
- Surveys to date:
 - December 2007, December 2008, July 2009, December 2009
- > 75% decrease in mid-channel prism volume observed in December 2009

Survey Transects and Removal Areas

Groundwater Monitoring

- Objectives: evaluate potential presence of PCBs in groundwater potential impacted by materials left in place
- · Eight quarterly sampling events at network of 15 wells
- · Four quarters of groundwater sampling completed to date
- All ARCADIS/TestAmerica sample results non-detect at average reporting limit of 0.05 µg/L
- All MDNRE/NEA sample results non-detect at average reporting limit of 0.025 µg/L
- Available data suggest migration of PCBs in groundwater not an issue

Slide 37 14 April 2010

© 2010 ARCADIS

Groundwater Monitoring Locations

Bank & Habitat Monitoring

- Annual monitoring of banks and restored habitat required for three years (per AOC, described in Design Report)
- Monitoring to include assessments of:
 - · Bank conditions determine need for maintenance and monitoring
 - Habitat/vegetation conditions presence of exotic/invasive species
- · Monitoring events in June and August 2009 included:
 - · Visual inspections and evaluations of bank condition
 - Topographic survey of bank profiles at 11 benchmarked locations
 - Quantitative assessment of bank stability using the Bank Erosion Hazard Index (BEHI) developed by Rosgen (2006)
 - Quantitative evaluation of vegetation establishment (percent ground cover and percent weed cover) and survival

Slide 39 14 April 2010

© 2010 ARCADIS

Bank Monitoring Transects

Bank Erosion Potential

Slide 41 14 April 2010 © 2010 ARCADIS

Bank & Habitat Monitoring: 2009 Results and Plans for 2010

2009 Results

- Erosion of banks in Removal Areas 8 and 9B observed repaired in late October/early November
- Several patches of reed canary grass noted and treated with herbicide
- No other repair/maintenance or vegetation issues

2010 Plans

- Inspection planned for May/June 2010
 - · Reclassify bank erosion potential
 - · Survey at 11 established transects
- · Collaborative inspection with USEPA/Trustees in July/August
 - · Address issues identified, as appropriate

Plainwell TCRA Effectiveness Considerations

Slide 43

14 April 2010

© 2010 ARCADIS

Effectiveness Considerations

- Short-Term Effectiveness
 - Source control
 - · Resuspension controls
- Long-Term Effectiveness
 - · Erodable soil and sediment PCB inventory reduction
 - · Soil and sediment PCB exposure reduction
 - · Fish tissue PCB reductions
- · Long-Term Recovery

Short-Term Effectiveness

Source Control

 Approximately 10 kg/yr PCB loading eliminated via bank stabilization (32% of the measured former impoundments bank erosion load)

Resuspension Controls

- No discernable increase in PCB or solids load carried by the river during construction, as indicated by upstream and downstream surface water monitoring
- No discernable change in bioavailable PCB concentrations in the Otsego City Impoundment over the course of removal activities
- Gradual loss of mid-channel prism following water level drawdown and water control structure removal

Slide 45 14 April 2010

© 2010 ARCADIS

Long-Term Effectiveness

Source Control

- 4,950 pounds (2250 kg) of PCB removed from potentially erodable inventory of bank soils, near-shore floodplain soils, toe-of-bank sediments, and mid-channel "hot spots"
- 104,300 cy of PCB-containing material removed from potentially erodable inventory
- Note: the PCB mass in the remaining mid-channel prism is approximately 6.8 kg – equivalent to ~2/3 of 1 year of bank erosion

Exposure Reduction

- Soil PCB levels in removal areas addressed by removal and backfill with cleaner soil
- Post-construction removal area sediment PCBs average 1.1 ppm*, median 0.061 ppm
- Samples from three remaining mid-channel prism areas averaged 0.12, 0.60, 0.08 ppm

*Excluding 48 ppm sample, which was from an adjacent area added in the field after removal underway.

Average of post-removal sediment PCB samples is 1.7 ppm with that sample included.

Long-Term Recovery

- Reductions in PCB exposure and fish tissue PCB concentrations will take time
- Source control is the priority to enable recovery
- Cleanup efforts in source areas are expected to reduce exposures over time and lead to further long-term declines in fish PCB levels
- Continuation of long-term monitoring will document trends in fish tissue
- Full recovery and removal of the most restrictive fish consumption advisories will require patience and depend on declines in upstream, urban area, and regional atmospheric sources

